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A general analysis of non-linear oscillations of conservative non-holonomic systems is presented: the choice 

of special coordinates in a neighbourhood of the equilibrium manifold, the analytic structure of normal 

forms of higher approximations beginning with the second, the use of the energy integral, and the explicit 

form of approximate solutions. 

THE EQUATIONS of motion of such systems to a first approximation have been considered both for 
the case of the critical point of the potential energy [l] and for the case of an arbitrary regular 
equilibrium [2]. The approximated constraint equations were integrated in the first paper, but not in 
the second. This gave rise to essentially irrelevant polemics, because in the general case it is proper 
to consider the neighbourhood of a manifold of equilibria rather than an isolated equilibrium [3]. 

Numerous investigations of the stability of non-holonomic systems (see the review [4]) have been 
largely based on the first approximation equation, mainly for the non-conservative case. Theorems 
on instability at the critical point are exceptions: the method of Chetayev functions was used [4] and 
asymptotic motions were constructed [5]. 

If all eigenvalues lie on the imaginary axis, the difference between the exact solution and the first 
approximation remains small only for finite times. It follows that interesting qualitative effects at 
long times in the motion of conservative non-holonomic systems about an equilibrium can only be 
found by turning to higher approximations, i.e. by utilizing the method of normal forms (see, e.g. 
[6,7]). The first such investigation was the paper by Markeyev [8]. 

Below it is shown that non-linear oscillations of systems with non-integrable constraints can be 
naturally considered in the framework of the general concept of weak non-holonomicity [9], and 
their normal forms possess definite characteristic features. 

t Prikl. Mat. Mekh. Vol. 56, No. 4, pp. 604-614, 1992. 
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1. PRELIMINARY CONSIDERATIONS ON NORMALIZATION IN A NEIGHBOURHOOD OF 

THE EQUILIBRIUM MANIFOLD 

Suppose that on the manifold (phase space) @ there is a vector field Z that vanishes on the 
submanifold E. Suppose that in suitable coordinates X, , 5, E is (locally) specified by the equations 
5, = 0. For any function f (expressed in terms of X, , 5,) we put 

E’=+ *g * . ..) ljl=j1 +js +... 

Because Z = 0 on E we have go1 :=I = 0 
In order to establish a proper association with perturbation theory, we introduce into the system 

of differential equations a small parameter E, putting 5 = ~5. Then 

For E = 0 one obtains the original approximation, which in the theory of small oscillations is 
known as the first rather than the zeroth approximation. It necessarily has Xi = 0, while 4” is 
linearly expressed in terms of 6, with the coefficients depending on X. 

We shall assume that the first-approximation system has diagonal form (so that 5 and 5 can also be 
complex), i.e. &I = A,(X)&. To obtain the Nth approximation, Na2, one must retain terms with 
E up to the power N- 1 inclusive. 

We consider a small e-neighbourhood in the variables X, 5. The introduction of E into the 
equations of motion, i.e. the transition to X, 5, means consideration of this neighbourhood in 
variables of order unity. The use of the Nth approximation in them gives an error of order .?‘-l over 
times of order l/e (by the usual theorems on estimates of solutions of differential equations), i.e. the 
error is of order unity for N = 1. Consequently, an interesting theory of small oscillations (when 
Reh, = 0) begins at the second approximation. 

It is easy to understand the appearance of the Nth approximation in the variables X, 5. We start 
with a system of the form 

(1.1) 

and neglect in the right-hand sides all monomials, starting with degree N in X, and N + 1 in 5, . One 
can then use a reduction-to-normal procedure, i.e. construct a change of variables after which 
successive approximations acquire their simplest form. 

The dependence of the coefficients in system (1.1) on X introduce definite complications (which 
will be pointed out) compared with the normalization of ordinary quasilinear systems. We will begin 
with the change of variables 

Y-X+ Y(N-‘)(X, Q, tZ=E+t)(N)(X,[J iv>2 (1.2) 

We directly quote the inverse expressions 

X-Y- Y(N-‘)(Y,n)+..., [=T&N)(Y,t))+... (1.3) 

Here new symbols have simply been substituted into the expressions YcN-‘), n(N), and the dots 
indicate higher-order terms (only there do the coefficients of the polynomials (1.2) depend on X). 

We differentiate relations (1.2). By (1.1) in the derivative of the monomial F(X) 6’ of degree 
Ma 1 there will be monomials (h(X), j)F(X)@ of the same degree plus terms of higher degrees 
including terms from the differentiation of F with respect to X. Hence in the variables X and 5 
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r;+p +. . . +xiN-2’ t x (Xi” t(~i)Y$Q’t . . . 
I/l-N-l 

T?K=hK[K+~~2’ +...+g!N-” t 2 (&$” t&j)T$‘)E’t... 
l/l-N 

On the right-hand sides of d(l.2)ldt we change to variables Y, 7, having substituted expressions 
(1.3). After this every monomial transforms as 

F(X)Q=F(Y- Y(N-‘)t...)(T)--(N)+.,..)j 

This gives a term F(Y) nj of degree M, and then terms of degree M + N - 1 (if one of the jk = 1, 
and also due to the dependence of F on X), and, finally, terms of degree greater than N. The degree 
N = M + N - 1 only for M = 1, so that the coefficients of degree N for rjK change only as a result of 
the transformation of the monomial 

Consequently, in variables Y, 77 

Yiil = XJ(il +(hj)Y(;‘, ljj-N-- 1 (1.4) 

(1.5) 

Ii I = N, i, f 0, c, = (0, . . , (;, , , . . , 0) 

@ = ,$’ +(-A, + (A+ j))# (1.6) 
ljl=N, j,=O 

If (A, j) #O, 1 j] = N- 1, then by a suitable choice of Yf) one can multiply Yg’, after which a 
choice of &), 1 j) = N, jK # 0 multiplies the corresponding 77 !/I. One can separately multiply the $I, 
(jl = N, jK=Oif 

x, zj, hl +. . . +iK--lb--l +jK+,hK+, +... 

When A, does not depend on X, solution (1.4) does not affect (1.5), and the normalization 
proceeds ostensibly according to the usual scheme. However, in this case the dependence on X of 
other coefficients significantly lengthens the calculation of the successive approximations. 

If nullification is impossible, the corresponding coefficients from (1.2) will be taken to be zero. 

2. THE NEIGHBOURHOOD OF THE EQUILIBRIUM MANIFOLD IN CONSTRAINED 

CLASSICAL DYNAMICS 

We begin by specifying linear constraints 

n 
g,(x,x’)z ,z,d,l(x)x;=O, s-m+1 ,..., n 

and together with a Lagrangian 

L = T - I’ - !h Zaii(x) xix) - v(x) 

The Lagrange equations with multipliers have the form (see [ 11) 

d(a~px. ydt - aLp.f = zls ags/ai 

(2.1) 

(2.2) 
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The equilibrium manifold is given by the conditions 

a VJax = c/lsag,/ax (2.3) 

In the theory it is usual to consider the case dim E = n - m (the dimension of E being equal to the 
number of constraints) because this is the “general situation”; the corresponding conclusions on the 
equations of motion can be found in [3,4]. However, in actual problems the dimension of E is often 
greater. Here subtleties occur that are worth pausing over. 

We shall assume the xi to be local coordinates on the configuration manifold M. From Eqs (2.1) at 
each of its tangent spaces T, M there is a distinguished subspace n, of dimension m (the constraint 
plane). We say that the submanifold E of dimension n - 12 IZ - m is properly situated with respect to 
the constraints if 

1. TX E is transverse to II, for all x E E . 
2. The distribution T, E II II, on E is completely integrable. 
This distribution has dimension m + (n - !) -n = m-1, so that the second requirement is 

significant only for 1 d m - 2. 
We now change to more-convenient coordinates, trying not to change the notation. 

Lemma 1. Without loss of generality we can assume that 

E= lx a=o, cr=l,...,l\ 

the constraint equations near E can be represented in solved form 

(2.4) 

m 
x,=f;(X1,. . . , x,, x;, . ) X;n) - c C$h(X)Xh (2.5) 

A=1 

and on E the coefficients are nullified: 

CSA(O,.. .I 0, x[+I,. . . ,x,)-O. (2.6) 

Indeed, we satisfy condition (2.4) and consider the integral manifolds EC of the distribution TX E fl n, on E. 

WehavedimE-dimEC=(n-Z)-(m-~)=n-m.OnecanassumethatonE 

8=1x =C =const; s=m+l _.. n] s s , 7 

Hence the basis vectors a/ax, E TX E generate a plane in TX M whose intersection with II, is the zero vector. We 
substitute alax, into (2.1). We obtain a matrix ljdrsll which should be non-degenerate, otherwise some 
non-linear combinations of a/ax, would belong to II,, which should not happen. From this we derive expression 
(2.5). We introduce the expansion 

I 

‘d(X)=C~A(XI+,,...,Xn)+ c c;*(x)*, 
lY=1 

Because x, (a = 1+ 1, . . . , m) are coordinates on E ‘, the vectors a/ax, E TX E n II,, and hence c,“, = 0. If 
c,“a # 0, then one should put y, = x~, y, =x, - 1 cfoaxa, and in the new coordinates we will have 

as was required. 

Remarks. 1. The concluding argument is well known and has frequently been used [4]. The nature of E in 
Lemma 1 is not significant. This lemma remains true when dim E <n = m; it is sufficient only to require that 
T,EnII,=O. 

2. An example of an improperly situated equilibrium manifold is given by Chaplygin’s sledge on a horizontal 
plane with a pendulum suspended from it. Furthermore, even for dim E = n - m the transversality of TX E and 
II, can be violated, and then it is impossible to have (2.4) simultaneously with (2.5). 

We return to conditions (2.3) and assume that they give a properly situated equilibrium manifold. 

We choose coordinates according to requirements (2.4)-(2.6). 
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Replacing (2.2) by the Voronets equations, together with (2.5) we obtain equations of the form 

~GhJX)U; + mhp”(X)UCIU, + @h(X) = 0, X\=Vh (2.7) 

where the G,, are coefficients of T* and the explicit form of r,+ is not important here; the 
equilibria are now solutions of the system 

Because all the ah = 0 when x, = 0, we have @A = .L@*p (x)xp (P = 1, . . . , I), and on E 

a2 v av 
fQ=-- +Iz- c,ph 

SX~ axp ax, 
(2.9) 

We shall assume that along E 

det II %p II f 0 

Then there are clearly no other equilibria in a neighbourhood of E. 

(2.10) 

Examples with separation of variables. We take z* = yx’ and L = (~‘~+y’*+f’~)/2- W(x, z) - U(y) (the 
physical realization of this constant is discussed in [lo]). The equations of motion are 

i =yx’ (2.11) 

(I +y’)~“+yy’~‘+awlax+yawlaz=Q (2.12) 

y ” + aulay = 0 (2.13) 

It is clear that Eq. (2.13) separates. Suppose y = 0 is its equilibrium. Then in (2.11) we obtain z* = 0 (and so 
the constraint is integrable on the submanifold {y = 0}), and (2.12) turns into 

X” + a w(x, z)/ax = 0 (2.14) 

which enables us to talk of a “holonomic subproblem” with parameter z on the manifold {y = 0). The case of 
an equilibrium y = a is easily reduced to the preceding case. 

The equilibrium equations (2.8) for system (2.1 l)-(2.13) have the form 

F = aulay = 0, G=aw/ax+yaw/az=o (2.15) 

We construct the matrix 

I 

aFlax aFlay aFhz 

aG/ax aClaY aG/az (2.16) 

-Y 0 1 B 

If its upper two rows are linearly independent, the equilibrium manifold E is one-dimensional and does not 
have singularities, while if it is non-degenerate, the tangent space T,E at each point PEE is transverse to the 
constraint plane IIP , as is required in Lemma 1. 

We substitute an arbitrary solution y(t) of Eq. (2.13) into (2.11) and (2.12). Then these two equations will 
describe the behaviour of a system with Lagrangian L = (xo2+zo2)/2 - W(x, z) with constraint z* = y(t)x’. If 
we take a family of solutions y = q(t, E) near the y = 0 equilibrium, where E is a small parameter, then we 
arrive at a weakly non-holonomic system in the sense of [9], and with E = 0 we obtain (2.14). 

After the time-variable change dt = (1 +y2)-“*dT, Eq. (2.12) acquires the form 

XI’+ awlax+yaWfaz=O (2.17) 

We shall give examples of some non-regularities in the construction of a manifold E. 
An equilibrium manifold may consist of a single isolated point. We take 

Then Eqs (2.5) give 

V= W+U=x~/6+xz=/2+z+y=/2 

Y =O, XQ +z’1 =o 
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It is worth emphasizing that the point x = y = z = 0 is regular both for the constraint equation and for the 
potential. 

At points where the regular manifold E is not transverse to the constraint, there is a change of stability. We 
take 

We obtain y = 0, z = x2/2 from (2.15). There are always stable oscillations with respect to y. If however y = 0, 
then in the x, z plane we have 

x” =z - x’l2, 2 = ccnst 

The equilibrium x = (2~)“~ is stable, and x = -(2z) 1’2 is unstable. There is a change of stability at the point 
x = y = z = 0 just as the matrix (2.16) becomes degenerate. The corresponding general result follows from the 
proof of Lemma 2 below. 

The stability mechanism for a one-dimensional equilibrium manifold deserves attention. 
If one takes U = y2/2, W = 02x2/2 + z, then one obtains a well-known example ([ll, Sec. 111). The point was 

that for an equilibrium at a non-critical point of the potential (here this is x = y = 0 and z arbitrary) there is no 
analogue of the Lagrange-Dirichlet theorem, so that stability requires a special proof even if the potential 
energy has a minimum (here this is z = const) to a first approximation. With the help of the Lyapunov integral 
criterion a sufficient condition for stability o< Cl/2 was obtained. This result can be extended to a necessary 
condition showing how instability can develop. 

We take a solution of Eq. (2.13) in the form y = l sint; with respect to this variable the equilibrium x = y = 0 
is stable; after the transition to the new time, Eq. (2.17) acquires the form of a non-homogeneous linear 
equation 

x” + w’x = -y, y=Eslnr(r,E) (2.18) 

with the period of y with respect to T equal to 

2n 

O(E) = J‘ (1 + c’sin2f)-‘hdl = (I +E~)-!/-‘F(Z/A, ~(1 +e’)) 
-H (2.19) 

0 

As e--r0 it is clear that 0(~)+27r. Hence for stability of the x = y = 0 equilibrium it is sufficient to require 
that ofn. 

Despite stability for fixed l #O, Eq. (2.18) can give an unbounded solution in x when O(E) = 2140. Because 
by (2.19) O(E) diminishes, there is a finite number of these values of E. 

The instability for w - n is obvious. 
If we take V= w~x~/~+xz+~~/~, then for Eq. (2.17) there can occur, in particular, the phenomenon of 

parametric resonance. 
We now take the potential 

V=-?hhcoS2X+Z+‘/2y= (2.20) 

With an appropriate choice of coordinates and units of measurement this is the potential energy in the 
problem of the motion of a plate in some force field (see [lo]; in particular, x is the angle of rotation of the 
plate). Here the holonomic subproblem is the “doubled” simple pendulum (in (2.20) we have cos2.x and not 
cosx). Equation (2.17) acquires the form 

x” + I/LhcosZx = -Esins + O(E~) 

Its difference from the equation of a simple pendulum perturbed by a small periodic moment is not significant, 
so that both general theoretical results [12, 131 and specific conclusions [14-161 apply to the problem under 
consideration. 

We emphasize that the appearance of an equilibrium manifold in non-holonomic mechanics is not 
due to the non-integrability of the constraints, but to their differential representation: if c,, = 0 in 
(2.9, the remarks on the structure of E remain true. 

From the point of view expressed in Sec. 1, the role of 5, is played by x, , v, , v, , and the role of 
X, is that of x, , x,. We put (* ) = (0, x, , xs). The equations of the first approximation are as follows: 

CGh,(. )ui + c*A,t )&x = 07 x&=lla, x,=x,=0 (2.21) 

We note that the x,’ = 0, although the v, participate in (2.21). 
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Lemma 2 (standard). We introduce a matrix I( Fha II= (( G,+ (l-l II@‘hu I( (in general rectangular) and 
assume that the eigenvalues of its square part IIF~~[J are positive and distinct (and if they coincide, 
they have simple Jordan cells). We denote them by ot, . . . , wf. Then without loss of generality one 
can assume that in (2.21) 

II Ghrr II = Em, II &p II = diag(w!, . . . , w:), II GOo II = 0 

so that in the variables X = (x, , a,), 5 = (p_, , P+~, v,), where 

P-a = x, - iva/w,(x), p+a = x, + iva/oa(X) - p_,l 

The equations of the second approximation are as follows: 

P-Cu =iwa(x)p_, +p12,] (X, E) 

v, = v, ‘2’(X,Ej x,=v, x;=o 

The last equation is true by Lemma 1. 

(2.22) 

3. THE GENERAL STRUCTURE OF THE NORMAL FORM 

System (2.5), (2.7) is reversible in the sense that ifx(t), v(t) is a solution, then so isx(-t), v(-t). 
Furthermore, it possesses a first integral, namely the energy integral quadratic in the velocities: 

H= T* + I’= %CGAC1(~)~AvC1 + V(x) 

It is precisely these properties that will be important later; we therefore do not need to make the 
connection between G,+ , I-‘,,py, a,+ and the original Lagrangian L more precise. 

In expansions (l.l)we put j = pa7, after which @ = pP_p”+ v’. 

Lemma 3. The coefficients of the expansion on the right-hand sides have the following properties: 

Indeed, because of the reversibility property of the system the variables p-, p+, v and X can also have t 
replaced by -t, v by -v, andp_ andp, interchanged (all simultaneously). 

Corollary. We shall write Q for even 1 r 1 and 71 for odd ) T 1. If j = pwro, the coefficients of v are real, p_, p+ 
and X are purely imaginary; if j = pvrl, the opposite is true. For p = (+ and T = ro, q the coefficients of X and v 
are, respectively, equal to zero. 

Theorem I. We will assume that amongst the frequencies o, (. ) there are no commensurabilities 
up to order N + 1 inclusive. We will denote the variables in the normal form of the Nth 
approximation by q_, q+, w, Y and will no longer refer to the fact that they depend on N [see (1.2)]. 

We introduce “polar coordinates” $a = argp_, , A, = IP_~ I. The normal form of the Nth 
approximation reduces to 

A; = A&+)A%V+‘, I (2lpl +lTi I GN- 1 (3.1) 

w:, z ~w~~‘+‘)A~Pw”‘, 2<2lpl+lrolCN (3.2) 
Y; z .z $‘4~A2pW”, 3<2lpl+l~~ l<N- 1 (3.3) 

Y;I=w.+~Y~“~(~~~~w~‘, 3G21/1l+lrl IGN- 1 (3.4) 

1Lh=wm+~J/, (pTPt(y)A2PwT0, 2<2lpltlr,l<iV- 1 (3.5) 

Proof. The vector A has the form (iw, -iw, 0) so that (A,j)=i(w,p-cr) with /p-al< 



514 YA. V. TATARINOV 

Ipl+lal = ljl-lrl. Relations (1.4)-(1.6) and Lemma 3 show that normalization preserves the 
reality property (9+ = 91) and reversibility. We will write out the coefficients that have to be present 
in normal form (not being reducible to zero) and re-denote them: 

Here we have also used the corollary to Lemma 3. The purpose and meaning of the 
transformation are obvious. The details of the second approximation are used in (3.3) and (3.4). 

Remarks. 1. System (3.1)-(3.4) separates out; it describes the changes in the “slow” variables. In the 
transition from the 2Mth approximation to the (2M + 1)th approximation the slow variables change in the same 
way, while because of (3.5) the angular variables obtain corrections to the frequency of order g”. 

2. In the case when the forces are not conservative, but are only functions of the coordinates, the normal 
form will be the same. 

3. Expressions for the original variables in terms of the variables A, 4, w and Y from the normal form of the 
Nth approximation can be taken in the form 

Xl = yf + z 1,4P0r) (Y’) cos@-4 IL) +E~crr+Y)sin (p-u, $)] AP+OwT (3.6) 

where, if i = a, then ya = Aa cos I,&, elsewhere cos & or sin I+& with coefficient F(X, A, w) will not occur, in the 
summation 26 lj 16 N; if i = a or s, then y, = Y,, , y, = Y, , the coefficients A (pp4 = 0 in the summation lj 1 <N 
and, as above, lj I 2 2, which is associated with the special form of the second-approximation equations. After 
substituting the solution of system (3.1)-(3.5) into (3.6) we obtain the Nth approximation for the solution of the 
exact equations in a neighbourhood of E (with an error discussed in Sec. 1). 

4. If dim E = n - m, then the variables W, , X, are not present in Theorem 1, while Eqs (3.1) and (3.4) acquire 
the form A’, = 0, Y: = 0. The latter enables one to assume the constraints to be integrable, because by (3.6) X, 
oscillates about constant values. These oscillations are the main manifestation of non-holonomicity (because 
the normal form (3.1), (3.5) is also true for holonomic systems with position forces and parameters Y,). 

5. A counter-example to remark 4 is the following system: 

L E(X.2 +y’z +2”)/2 - (xl +y’)/2, 2’ = xy’ - yx’ 

Here the equations of motion are x** +x = y” + y = 0 plus the constraint equation, as a result of which z’ 
has the meaning of a constant square, and z increases monotonically (this being an effect of the simplest 
resonance w1 = 0.~). 

Theorem 2. We expand the energy integral: 

H= ZH@T)(Y)(I! 9: wT 

Because of the reversibility (the evenness of H in n’) the quantities H(Pmo) and iH@“‘) are real, 
so that 

H=Z[Z-I(~~~~)(Y)COS@- CT, $I) +iH(Pu71)(Y)sin(p- u, Jl)]A”+‘w7 (3.7) 

The averaged energy (a function of the slow variables only) 

&=~@I Z. ; z H(PP70)(Y)A2%u7, 2j%f<N+ 1 (3.8) 
L=o ljl=zL 

has, because of system (3.1)-(3.4), a derivative of order 2M+ 2, which imposes the following 
restrictions on the coefficients of the system: 

aHmG 1 

2 ypI +x aH(ppro) yy 4 
a aYa , ah 

(3.9) 

+ 2 2ffPP7~) polyps + x II(P~P*v~ +ea) tva + 1) w IP7oi I 0 
a! a 

where p + I_L and r,, = r+ are arbitrary tixed integer vectors. The non-constant form I-#“] of lowest 
degree is an exact integral of the second-approximation equations. 
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In particular, H 1’1 = V(0, Y, , Y,), where there is in fact no dependence on Y, because of (2.9). 
Furthermore 

2@’ = B,(Y)& + &(Y)w: 

If @‘I = const, i.e. if E is a manifold of critical points of V, then HE1 is an integral for the slow 
variables in the first (which is trivial), second and third approximations. 

Examples. We will use Theorem 1 to write out the normal form of the second approximation for I= 2, m = 3, 

n = 5: 
A; =c, A,w,, A; =c2A,w, 

w; = d, A: + d;A: + d, w;, Y; = w, (3.10) 

u; = y;=o, JI; *w,, IL; =w, 

Suppose the coefficients are constant. A system of the form (3.10) appeared [8] in the problem of a rigid body 
rolling on a plane. There it is true that d3 = 0. It turns out that this is a universal fact, and follows from the 
presence of the integral 

2H,2’ =&,A; +&,A; +k,w; 

because from Theorem 2 one obtains 

k,c, +k,d, =k,cl +k,d, =k,d, -0 

The analysis of system (4.1) in [8] carries over to a wide class of systems for which cl, c2<0. A similar 
analysis is possible for other cases. A system of the form (3.10) with non-constant coefficients appears in the 
problem of the rolling of a plane plate on a rough surface in a gravitational field. It is extremely complicated to 
reduce it to normal form in the higher approximations (see Sec. 4). 

4. THE PROBLEM OF A ROD ROLLING ON AN INCLINED CYLINDER 

Suppose that in a cylindrical system of coordinates P(r, 60, z) is the point of contact of the rod and the 
cylinder, S is its centre of mass, PS = se, where e is the direction vector of the rod, and 8 is the angle between eV 
and e. Then without taking account of the constraints 

T=$&V([rlp’+(scos8)‘]* + [z’+(ssine)‘]’ + [scos~+Y’]‘)+ %I@” +~“cos’e) 

where Z is the central moment of inertia of the rod and M is its mass. The constraint equations are 

dz+ds. sin6 =O, rdq +ds. cos8 = 0 (4.1) 

For inertial motion we have the Chaplygin system with independent variables s and 0. Moreover, the change of 
variable dt = cos @(I+ Ms2)‘“d7 reduces the equations of inertial motion to Lagrangian form. 

The potential energy with an appropriate choice of rp has the form 

~~~g[Sina(Z+SSin8)+~S~(r~SQ-$sSeSinQ)] 

where (Y is the angle between the axis of the cylinder and the horizontal plane. One can assume that 
M=g=r=l. 

The coordinates prescribed by Lemma 1 are introduced by the formulas 

~=Qp+Sf~~so, Q=z+ssin0 

because the equilibrium manifold is E = {s = O}. 

Corollary to Theorems 1 and 2. The normal form of the second approximation equations (3.1) and (3.2) for 
l=1,m=2hastheform(A=A1,w=w2) 

A’ = c(Y) Aw, w’ =d,(Y)A” +d,(Y)wl 

In the third approximation to equation JI’ = o (see Eq. (3.5)) corrections quadratic in A and w are added. In 
the fourth approximation on the right-hand sides of A’ and w’ there appear terms of the fourth degree in A and 
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w (which we shall not make more precise or write out), and, most importantly, a transgression in the sense of 
[9] can begin: the non-trivial evolution of the dependent coordinates 

Y~=w(E,~(Y)A’+ER(Y)w’), s=3, 4,... 

(similar terms are also added to Y; = w). 
The energy integral has the form 

and relations (3.9) give 

H= V(Y,)+‘/l[k,(Y)A”+k,(Y)w’] +... 

av 
z- ESh+ 5 +2k,dh-2(h- 2)k,c, =0, h=l,2 

ah ay, 

Results of calculations. In the problem under consideration 

A’ F*S= +s”/w’, w w e’lc0se + s’FIw’, Y, * @, Y, =Z 

w’(uJ) = coSacoS~, F=cosesina+~~sasin@sine 

c, = sine, d, =d, = 0, k, = ms’e wsacosu~, k, = 1 

3 sina 3 coscrsin@ 
E 

=-- 
,I =- _- E 

4 cde ’ 
E 

4c0.98 ” ‘= 
=E,, =0 

The process of the motion can be qualitatively represented as oscillations in s, cp, z with amplitude of order E 
about an equilibrium position with coordinates V, Q combined with the slow rotation of the rod. (In the first 
approximation the latter effect is not present.) In a time of order l/e the angle 0 changes by a finite amount, and 
the equilibrium position about which the oscillation occurs is displaced by an amount of order 2 (transgres- 
sion). The displacement is along the curve 

Q-Q, +ctga[cos(@ - eO) - l] 

The amplitude of the oscillations is of order A. In the second approximation AcosfJ = Aocosf$, so that 
depending on the direction of the change in 0 the quantity A decreases or increases, remaining a quantity of 
order E. 

5. CONCLUSION 

The concept of weak non-holonomicity proposed in [9] and used in [lo, 17, 181 consisted of 
considering a non-holonomic system depending on a small parameter such that when the latter was 
zero one obtained a family of Hamiltonian systems. Perturbations of such a family then appear in 
the investigation of a single non-holonomic system. 

The main conclusions are as follows (see also [19]). 
If the dimension of the equilibrium manifold is equal to the number of constraints, then in 

dynamics with independent frequencies the constraint equations are “integrable on average”, i.e. in 
suitably defined coordinates the motion is nearly confined to coordinate planes, and the deviation 
from the latter is of the second order of smallness and has an oscillatory nature. 

If the dimension of the equilibrium manifold is greater than the number of constraints, in the 
second approximation a trivial displacement along it occurs with velocity of the first order of 
smallness, while in the fourth approximation one can catch a previously unnoticed effect of 
additional evolution along the equilibrium manifold with a velocity of the third order of smallness, 
so that it is no longer appropriate to talk of the “average integrability”. 

The examples given above show that near the equilibrium manifold of a non-holonomic system all 
the richness of Hamiltonian mechanical phenomena can appear. In addition, from the point of view 
of normal forms when there is no commensurability between the frequencies the behaviour of 
non-holonomic systems near an equilibrium manifold is very uniform and is mainly governed by its 
dimension. The exception is problems in which, for one reason or another (for example, some 
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symmetry), coefficients of a normal form vanish, as in the problem of the oscillation of a body on a 
plane in which the point of contact does not evolve. The existence of an energy integral enables us to 
draw definite conclusions about the coefficients of the higher approximations when the lower 
coefficients are known. 

The author is grateful to S. V. Bolotin for the remarks at the beginning of Sec. 3 and to V. V. 
Rumyantsev for his exacting requirements in discussions of this paper. 
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